Bài 14. Phương trình mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M(x0; y0; z0) và biết cặp vectơ chỉ phương \(\overrightarrow{u}\) = (a; b; c), \(\overrightarrow{v}\) = (a′; b′; c′).

a) Hãy chỉ ra một vectơ pháp tuyến của mặt phẳng (α).

b) Viết phương trình mặt phẳng (α).

datcoder
27 tháng 10 lúc 21:34

a) Vì \(\overrightarrow u ,\overrightarrow v \) là các vectơ chỉ phương của mặt phẳng \(\left( \alpha  \right)\). Do đó, \(\overrightarrow u ,\overrightarrow v \) cùng vuông góc với vectơ pháp tuyến của mặt phẳng \(\left( \alpha  \right)\).

Một vectơ pháp tuyến của mặt phẳng \(\left( \alpha  \right)\) là: \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {bc' - b'c;ca' - c'a;ab' - a'b} \right)\).

b) Vì mặt phẳng \(\left( \alpha  \right)\) có một vectơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\) và đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) nên phương trình mặt phẳng \(\left( \alpha  \right)\) là:

\(\left( {bc' - b'c} \right)\left( {x - {x_0}} \right) + \left( {ca' - c'a} \right)\left( {y - {y_0}} \right) + \left( {ab' - a'b} \right)\left( {z - {z_0}} \right) = 0\)