trong không gian Oxyz, cho tam giác ABC vuông cân tại C và có các đỉnh A\(\in\)(Oxz), B(-2;3;1) và C(-1;1;-1). Tìm tọa độ điểm A.
Trong không gian cho hệ tọa độ Oxyz ba điểm A(0;1;2) B(2;-2;1) C(-2;1;0) và mặt phẳng (p): 2x +2y +z -3=0 Viết phương trình mặt phẳng (ABC) và tìm tọa độ điểm M thuộc (P) sao cho M cách đều A,B,C
trong hệ trục tọa độ oxyz cho 4 điểm A(1;-2;0), B(2;0;3), C(-2;1;3) và D(0;1;1) thể tích khối tứ diện ABCD bằng A.6 B.8 C.12 D.4
Trong MP tọa độ Oxy cho tam giác ABC cân tại A(-1;3). D thuộc AB sao cho AB=3AD. Kẻ BH vuông với CD. M(1/2;-3/2) là trung điểm HC. B thuộc đường thẳng đenta có tọa độ x+y+7=0
Tìm tọa độ điểm C
Trong không gian với hệ tọa độ Oxyz , cho lăng trụ đứng tam giác ABC. A'B'C' cóA(1;0;0), B(0; 2;0), C(-1;0;0) và A' (1;0; 3). Tìm toạ độ điểm G’ là trọng tâm của tam giác A'B'C'
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A ( 1;1;1) B(2,1,0) C(2,0,2). Gọi P là mp chứa BC và cách A một khoảng lớn nhất. Tìm vecto pháp tuyến của (P)
Trong không gian với hệ trục tọa độ Oxyz , cho lăng trụ đứng tam giác ABC. A'B'C'có A(1;0;0), B(0; 2;0), C(-1;0;0) và A' (1;0;3) . Tọa độ trung điểm M của AB' là:
Trong không gian tọa độ \(Oxyz\) cho đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y-1}{2}=\dfrac{z+1}{1}\) và hai điểm \(A\left(6;0;0\right)\), \(B\left(0;0;-6\right)\). Khi điểm \(M\) thay đổi trên đường thẳng \(d\), hãy tìm giá trị nhỏ nhất của biểu thức \(P=MA+MB\)
A. \(minP=6\sqrt{3}\) B. \(minP=6\sqrt{2}\) C. \(minP=9\) D. \(minP=12\)
Mình cần bài giải ạ, mình cảm ơn nhiều♥