Câu 4(3d) Cho đường tròn tâm O, đường kính AB. Lấy điểm C trên đường tròn sao cho số đo c AC bằng 60°. Vẽ dây CD vuông góc với AB tại M, dây BC cắt đường tròn đường kí BO tại điểm thứ hai là I a) Chứng minh Ol//AC và ba điểm O:I;D thẳng hàng b)Xác định vị trí tương đối của đường thẳng MI với đường tròn đường kính BO c) Gọi N là điểm nằm giữa O và D. Tia CN cắt đường thẳng AD tại K, đường thẳng cắt đường thẳng OK tại E. Chứng minh tứ giác AOED nội tiếp
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Cho đường tròn (O;R), đường kính AB. Lấy điếm M thuộc đường tròn (O) (AM<BM). Tiếp tuyến tại A của đường tròn tâm O cắt tia BM tại C.
1. Cm AC^2=CM.CB
2. Tia CO cắt đường tròn (O) lần lượt tại 2 điếm D và E ( điểm D nằm giữa hai điếm C và E). Cm: CM.CB=CD.CE
3. Vẽ dây AK vuông góc CO tại H.Cm: CK là tiếp tuyến của đường tròn (O).
Cho đường tròn tâm O lấy điểm A ở ngoài (O) đường thẳng AO cắt đường tròn tâm O tại 2 điểm B,C (AB nhỏ hơn AC) . Qua A vễ đường thẳng không đi qua O cắt (O) tại 2 điểm phân biệt D và E (AD nhỏ hơn AE). Đường thẳng vuông góc với AB cắt đường thẳng CE tại F
a) chứng minh tứ giác ABEF nội tiếp
b)C/m:DM vuông góc với AC
c)C/m:CE.CF+AD.AE=AC2
Chỉ cần làm phần c thôi phần a với cả b mình biết làm rồi
Cho đường tròn (O) và điểm A ở ngoài đường tròn. Vẽ tia Ax cắt (O) tại B, c và tia Ay cắt (O) tại D, E sao cho xÂO > yÂO. So sánh các dây DE và BC.
Cho đường tròn (O;5cm). Dây AB = 8cm. Tiếp tuyến tại A của đường tròn cắt đường kính vuông góc với AB tại C.
a) Hãy tính khoảng cách từ tâm O đến dây AB.
b) Tính AC.
Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
Bài 3: Cho nửa đường tròn (O) đường kính AB và AC là một dây của nó. Kẻ tiếp tuyến Ax và kẻ đường phân giác của góc CAx cắt nửa đường tròn tại E và cắt BC kéo dài tại D. a/C/m: AABD cân. b/ C/m: OE // BD. c/Gọi I là giao điểm của AC và BE. C/m: DI ⊥ AB. d/Tính độ dài AE, biết AB = 2cm và BAC = 20°,
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) \(MA^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) MA\(^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.