Trên đường tròn (O;R) đường kính AB lấy điểm C . Trên tia AC lấy điểm M sao cho C là trung điểm của AM
a) Tam giác AMB là tam giác gì ?
b) Xác định vị trí của C để AM có độ dài lớn nhất
c) Xác định vị trí của C để AM = 2Rcăn 3
d) CMR khi C di chuyển (O) khi M di chuyển trên 1 đường tròn cố định
Bài 1: Cho đường tròn (O;3) và điểm M,N sao cho OM=2 căn 2 và ON=3. Xác định vị trí của điểm M và N với (O).
Bài 2:Cho đường tròn (O) và a nằm trên đường tròn. vẽ góc xAy=90độ và Ax, Ay cắt đường tròn tại B và C, biết AB=6, AC=8. tính bán kính đường tròn (O)
Cho đường thẳng ( O,R) và dây cung BC cố định ( BC <2R). Điểm A di động trên đường tròn (O) sao cho tam giác ABC có 2 góc nhọn và AB<AC. Vẽ đường cao CD của tam giác ABC và đường kính AM. Hạ CE vuông góc AM tại E. Gọi H là trực tâm của tam giác ABC
1/ Chứng minh tứ giác ADEC nội tiếp
2/ Chứng minh góc ABH = góc DEA và DE.BC=DC.BM
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho AC > AB, CB cắt đường tròn tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tai F. 5) Chứng minh rằng tứ giác AEFD nội tiếp đường tròn. 6) Gọi M là một điểm trên cung lớn BD của đường tròn (O) (M khác B và D). Chứng minh rằng . BMD OFD 7) Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng đoạn OA. Tính giá trị của ACAB. 8) Gọi P là điểm di động trên đoạn AC, đường thẳng BP cắt đường tròn (O) tại N. Chứng minh rằng tâm của đường tròn ngoại tiếp tam giác CPN luôn nằm trên một đường thẳng cố định khi P thay đổi trên đoạn thẳng AC.
Từ điểm A nằm ngoài (O;R) vẽ các tiếp tuyến AM,AN (M,N là 2 điểm). MN cắt AO tại H. a) chứng minh 4 điểm A,M,O,N cứng thuộc đường tròn. Xác định tâm I và bán kính của đường tròn. b) chứng minh OA vuông góc MN tại H là trung điểm của MN. c) chứng minh AM2=AH.AO=OA2-R2. d) vẽ đường kính MD của (O). Chứng minh ND song song OA và 2OH=ND
). Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho ; AC AB CB cắt (O) tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tại F. 1) Chứng minh bốn điểm A, D, E, F cùng nằm trên một đường tròn. 2) Gọi M là một điểm bất kì trên cung lớn BD của (O) (M khác B và D). Chứng minh: . BMD OFD 3) Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng độ dài đoạn OA. Tính giá trị của ACAB. 4) Gọi P là điểm thay đổi trên đoạn thẳng AC, đường thẳng BP cắt (O) tại N. Hỏi khi P di chuyển trên AC thì tâm đường tròn ngoại tiếp tam giác CPN chạy trên đường nào?
cho đường (O;R) và điểm K ở trong đường tròn đó sao cho OK=r Vẽ đường tròn (K,r) Vẽ dây AB của đường tròn (O) tiếp xúc với đường tròn (K) tại M Xác định vị trí dây AB để tổng S=MA^2+MB^2 có giá trị lớn nhất Tính giá trị lớn nhất khi đó