Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Khải

 Trên đường tròn (O) đường kính AB, lấy điểm E bất kỳ (khác A và B). Gọi F là điểm đối xứng với E qua O. Vẽ đường thẳng vuông góc với AB tại B, đường thẳng này cắt các tia AE, AF lần lượt tại M và N. a) Chứng minh AE.AM = AF.AN. b) Tìm vị trí của E trên đường tròn (O) để đoạn thẳng MN có độ dài nhỏ nhất.

Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 21:49

a: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>BE\(\perp\)AM

Xét (O) có

ΔAFB nội tiếp

AB là đường kính

Do đó: ΔAFB vuông tại F

=>BF\(\perp\)AN

Xét ΔABM vuông tại B có BE là đường cao

nên \(AE\cdot MA=AB^2\left(1\right)\)

Xét ΔABN vuông tại B có BF là đường cao

nên \(AF\cdot AN=AB^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AM=AF\cdot AN\)