Cho đt(o) một điểm M nằm ngoài đt (o) vẽ 2 tiếp tuyến MA , MB của đt ( A,B là 2 tiếp điểm ) Vẽ cáp tuyến MCD của đt sao cho C nằm giữa M và D . MO cắt AB tại I . CI cắt đt (o) tại N . CMR : AB // DN .
Cho đường tròn tâm O bán kính 2 cm từ điểm A bên ngoài đường tròn , vẽ 2 tiếp điểm AB và AC vuông góc với nhau (B;C là tiếp điểm ) . lấy điểm M thuộc cung BC . vẽ tiếp tuyến của đường tròn M tại 2 tiếp tuyến lần lượt ở D và E
a) tứ giác ABOC là hình gì
b) tình chu vi tam giác ADE
c) tính góc DOE
Cho nửa đường tròn tâm O đường kính AB = 2R. Trên nửa đường tròn lấy điểm C sao cho cba = 300. Trên tia tiếp tuyến Bx của nửa đường tròn lấy điểm M sao cho BM = BC.
a/ Tam giác ABC là tam giác gì ? Vì sao ?
b/ Chứng minh BMC đều.
c/ Chứng minh MC là tiếp tuyến của đường tròn tâm (O;R).
d/ OM cắt nửa đường tròn tại D và cắt BC tại E. Tính diện tích tứ giác OBDC theoR. câu d mọi người giải thích kĩ giùm nha=>
Cho đường tròn tâm O đường kính BC. Từ điểm H trên đoạn OB (H khác O và B) vẽ dây cung AD vuông góc với OB.
a) Chứng minh tam giác ABC vuông và AD^2 = 4HB.HC
b) Các tiếp tuyến của (O) tại A và D cắt nhau tại M. Chứng minh 3 điểm M, B, O thẳng hàng và 4 điểm M, A, O, D cùng thuộc một đường tròn
c) Chứng minh B là tâm đường tròn nội tiếp tam giác MAD và BM.CH = CM.BH
d) Gọi I là chân đường vuông góc hạ từ A xuống đường kính DE, ME cắt tại AI tại K. Chứng minh KA = KI
cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
Cho tam giác ABC (AB < AC), có ba góc nhọn nội tiếp trong đường tròn tâm O,Gọi H là giao điểm của đường cao AD, BM. Gọi N là giao điểm của CH và AB, I là trung điểm BC. K đối xứng H qua I.
a) C/m K thuộc đường tròn tâm O
b)C/m AK vuông góc với MN
Giúp em ạ cần gấp
Cho tam giác nhọn ABC nội tiếp đường tròn O. Gọi M N, lần lượt là trung điểm của các
cạnh BC và AC. Đường thẳng MN cắt cung nhỏ BC của đường tròn O tại P.
a) Chứng minh rằng tứ giác OMCN nội tiếp.
b) Gọi D là điểm bất kỳ trên AB D A D B , . Đường tròn ngoại tiếp tam giác BPD cắt cạnh BC tại điểm
I khác B K; là giao điểm của hai đường thẳng DI và AC. Chứng minh rằng PK PB PC PD .
c) Gọi G là giao điểm khác P của AP với đường tròn ngoại tiếp tam giác BPD, đường thẳng IG cắt AB tại
E. Chứng minh rằng D di chuyển trên cạnh AB thì tỉ số AD
AE không đổi.
Cho tam giác ABC vuông tại A và AB < AC. Từ A, kẻ AH vuông góc với cạnh BC tại H. Trên đoạn thẳng HC lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Gọi O là trung điểm của đoạn thẳng CD, vẽ đường tròn tâm O đường kính CD. Đường tròn (O) vừa vẽ có điểm chung thứ hai với cạnh AC là E. Chứng minh HA = HE và tính số đo của góc OEH.
Giúp mình với mình đang cần gấp lắm ạ