cho nửa đường tròn tâm o đường kính ab . Trên nửa đường tròn lấy hai điểm M và N sao cho AM=BN . Gọi C là giao điểm của AN với BM . Chứng minh tam giác ABC cân
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b/Chứng minh CA= CD và BD=BA
C/cho góc ACB= 45o . Tính góc ADC
D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD
Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD
a/ chứng minh ΔAHD=ΔDBH
b/ Hai đường thẳng AB và DH có song song không? vì sao?
c/Tính góc ACB biết góc BAH=35o
Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM
a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC
b/ chứng minh AM=AN
c/ chứng minh AI vuông góc với BC
Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD
a/Chứng Minh: ΔAOM=ΔBOM
b/chứng minh:AM=MB
c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD
Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD
a/ chứng minh : AD=BC
b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD
c/chứng minh: OE là phân giác của xOy
Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng
a)ΔADB=ΔADC
b) AD vuông góc với BC
1, cho tam giác ABC có góc A = 90 độ. Gọi M là trung điểm của cạnh AC, trên tia BM lấy điểm N sao cho M là trung điểm của đoạn BN. Chứng minh
a, CN vuông góc với AC và CN = AB
b, AN = BC và AN song song với BC
Cho tam giác ABC có AB bé hơn AC, AM là tia phân giác của góc A ( M thuộc BC ). Trên tia AC lấy điểm D sao cho AD=AB
a) Chứng minh BM=MD
b) Gọi K là giao điểm của AB và DM. Chứng minh tam giác tam giác DAK=tam giác BAC
c) Chứng minh AM là đường trung trực của đoạn thẳng BD
Cho đoạn thẳng AB và C nằm giữa A,B nhưng không nằm trùng với trung điểm của đoạn thẳng AB.Trên 2 nửa mặt phẳng đối nhau bờ AB kẻ 2 tia Ax,By vuông góc với AB.Trên tia Ax lấy 2 điểm M,M', trên tia By lấy 2 điểm N,N' sao cho AM=BC, BN=AC,AM'=AC,BN'=BC.CMR :
a/MC=NC;AN=BM';AN'=BM
b/AN//BM' và AN'//BM
c/ MN' và M'N cắt nhau tại trung điểm O của đoạn thẳng AB
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
Cho đoạn thẳng AB, O là trung điểm AB. Trên cùng nửa mặt phẳng bờ AB vẽ các tia à , By cùng vuông góc với AB. C là 1 điểm bất kì thuộc tia Ã. Đường vuông góc với OC tại O cắt tia By ở D. Gọi K là giao điểm của CO và BD. CMR:
a)Tam giác AOC=tam giác BOK
b)Tam giác COD = tam giác KOD
c)CD=AC+BD
Help!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho tam giác ABC có AB=AC. Gọi M,N lần lượt là trung điểm của AC và AB.
a) C/m tam giác ABM= tam giác CAN
b) Gọi O là giao điểm của BM và CN. C/m: tam giác BOC có 2 góc bằng nhau
c) Lấy E,F sao cho M là trung điểm của BE, N là trung điểm của CF. C/m A là trung điểm của EF
d) C/m MN//BC,MN//EF