\(A=2+2^2+2^3+2^4+...+2^{2017}+2^{2018}.\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2017}+2^{2018}\right).\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2017}\left(1+2\right).\)
\(A=2.3+2^3.3+...+2^{2017}.3.\)
\(A=\left(2+2^3+...+2^{2017}\right).3⋮3\left(đpcm\right).\)
Tổng đó có chia hết cho 3 vì:
A=2+\(2^2+2^3+...+2^{2017}+2^{2018}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2017}+2^{2018}\right)\)
=2.(1+2)+\(2^3.\left(1+2\right)\)+...+\(2^{2017}.\left(1+2\right)\)
=2.3+2\(^3\).3+...+2\(^{2017}\).3
=3.(2+2\(^3\)+...+2\(^{2017}\))\(⋮3\)
Vậy A \(⋮\) 3