\(=a\sqrt{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=a\sqrt{3}.\dfrac{1}{3}=\dfrac{a\sqrt{3}}{3}\)
\(=a\sqrt{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=a\sqrt{3}.\dfrac{1}{3}=\dfrac{a\sqrt{3}}{3}\)
Tính :
a ) \(S=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+.....+\dfrac{1}{\sqrt{100}+\sqrt{101}}\)
b ) \(S=\dfrac{1}{\sqrt{2}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{6}}+...+\dfrac{1}{\sqrt{100}+\sqrt{102}}\)
Giúp mk làm bài nay vs mấy bạn lớp 8 nhé
bài 1
Cho biểu thức A=\(\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\)
a) tìm điều kiện xác định .rút gọn A
b) với giá trị nào của x thì A > \(\dfrac{1}{3}\)
c) tìm x để A nhỏ nhất
bài 2
chứng minh các đẳng thức sau:
a) 2\(\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
b)\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
c)\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
Tính :
a ) S= 5+55+555+...+55...5 ( 50 chữ số 5 )
b ) S= 75+755+7555+...+755...5 ( 50 chữ số 5 )
c ) \(S=\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2017} +\sqrt{2019}}\)
d ) \(S=\dfrac{1}{\sqrt{3}+\sqrt{6}}+\dfrac{1}{\sqrt{6}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{12}}+...+\dfrac{1}{\sqrt{2016}+\sqrt{2019}}\)
A=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a)Rút gọn
b)Tìm GTNN A
1. Tìm số tự nhiên n sao cho :
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{n.\left(n+1\right)}=\dfrac{2999}{3000}\)
2. Tính :
a ) \(S=2018.3+2018.4+2018.5+...+2018.2018\)
b ) \(\dfrac{1}{\sqrt{8}+\sqrt{10}}+\dfrac{1}{\sqrt{10}+\sqrt{12}}+\dfrac{1}{\sqrt{12}+\sqrt{14}}+...+\dfrac{1}{\sqrt{200}+\sqrt{202}}\)
c ) \(S=5.21^2+5.21^3+5.21^4+....+5.21^{2018}\)
d ) \(A=9+99+999+9999+...+9..9\)( 99 chữ số 9)
e ) 72+772+7772+...+77...72( 77 chữ số 7 )
2. Tính tổng :
a ) \(S=\dfrac{1}{3\sqrt{1}+3\sqrt{3}}+\dfrac{1}{3\sqrt{3}+3\sqrt{5}}+...+\dfrac{1}{3\sqrt{2017}+3\sqrt{2019}}\)
b ) S = \(\dfrac{1}{\sqrt{2.2}+\sqrt{2.3}}+\dfrac{1}{\sqrt{2.3}+\sqrt{2.4}}+\dfrac{1}{\sqrt{2.4}+\sqrt{2.5}}+...+\dfrac{1}{\sqrt{2.2018}+\sqrt{2.2019}}\)
Rút gọn: a, \(A=\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
b, \(B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
Tính:
a, \(1+\dfrac{1}{1+2}+...+\dfrac{1}{1+2+3+...+n}\) tại n=2014
b, \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\) tại n=2014
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\) . CMR : \(\sqrt[3]{\dfrac{a}{b\left(b+2c\right)}}+\sqrt[3]{\dfrac{b}{c\left(c+2a\right)}}+\sqrt[3]{\dfrac{c}{a\left(a+2b\right)}\ge\dfrac{3}{\sqrt[3]{3}}}\)
a, Rút gọn biểu thức \(A=\dfrac{\sqrt{1-\sqrt{1-x^2}}\left(\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\) với \(-1\le x\le1\)
b, Tính giá trị biểu thức Q = \(\dfrac{a^6-2a^5+a-2}{a^5+1}\)biết \(\dfrac{a}{x+y}=\dfrac{5}{x+z}\)và \(\dfrac{25}{\left(x+z\right)^2}=\dfrac{16}{\left(z-y\right)\left(2x+y-z\right)}\)
Giúp em với ạ