Tung độ giao điểm: \(y=4y-y^2\Rightarrow\left\{{}\begin{matrix}y=0\Rightarrow x=0\\y=3\Rightarrow x=3\end{matrix}\right.\)
\(x=4y-y^2=4-\left(y-2\right)^2\Rightarrow\left(y-2\right)^2=4-x\)
\(\Rightarrow y=2+\sqrt{4-x}\) với \(y\ge2\)
\(y=2-\sqrt{4-x}\) với \(y\le2\)
Thể tích:
\(V=\pi\int\limits^3_0x^2dx+\pi\int\limits^4_3\left(2+\sqrt{4-x}\right)^2dx-\pi\int\limits^4_0\left(2-\sqrt{4-x}\right)^2dx=\frac{27\pi}{2}\)