cos a - sin a = 1/4
cos a + sin a = 1/2
=> cos a = 3/8
sin a = 1/8
sin 2a = 2 * sin a * cos a = 2 * 1/8 * 3/8 = 3/32
cos a - sin a = 1/4
cos a + sin a = 1/2
=> cos a = 3/8
sin a = 1/8
sin 2a = 2 * sin a * cos a = 2 * 1/8 * 3/8 = 3/32
cho cos a = 3/5, 3π/2 < a < 2π. Tính sin2a, sin(π - π/3)
cho A , B , C là 3 góc của tam giác ABC . chứng minh rằng : a) sin2A + sin2B + sin2C = 4sinAsinBsinC ; b) cosA + cosB + cosC = 1 = 4sin\(\frac{A}{2}\)sin\(\frac{B}{2}\)sin\(\frac{C}{2}\) ; c) cos2A + cos2B + cos2C = 1 - 2cosAcosBcosC
Cho A, B, C là 3 góc của tam giác. CMR:
sin ( A + 2B + C) = -sinBcos A = sin B sin C - cos B cos Ccos A + cos B + cos C = 1 + 4 sin \(\frac{A}{2}\)sin \(\frac{B}{2}\)sin \(\frac{C}{2}\)sin2A + sin2B + sin2C = 2 cos A cos B cos C1. Cho \(2\cos\left(\alpha+\beta\right)=\cos\alpha\cos\left(\pi+\beta\right)\)
Tính \(A=\dfrac{1}{2\sin^2\alpha+3\cos^2\alpha}+\dfrac{1}{2\sin^2\beta+3\cos^2\beta}\)
2. Rút gọn: a) \(A=4\cos\dfrac{2x}{3}\cos\dfrac{\pi+2x}{3}\cos\dfrac{\pi-2x}{3}\)
b) \(B=\dfrac{\sin\left(a-b\right).\sin\left(a+b\right)}{\cos^2a.\sin^2b}-\tan^2a.\cot^2b\)
3. Chứng minh rằng: Nếu \(2\tan a=\tan\left(a+b\right)\) thì:
a) \(\sin b=\sin a.\cos\left(a+b\right)\)
b) \(3\sin b=\sin\left(2a+b\right)\)
Chứng minh đẳng thức :
a) \(\dfrac{\cos\left(a-b\right)}{\cos\left(a+b\right)}=\dfrac{\cot a.\cot b+1}{\cot a.\cot b-1}\)
b) \(\sin\left(a+b\right)\sin\left(a-b\right)=\sin^2a-\sin^2b=\cos^2b-\cos^2a\)
c) \(\cos\left(a+b\right)\cos\left(a-b\right)=\cos^2a-\sin^2b=\cos^2b-\sin^2a\)
Cho sin a = 3/5 với π/2 < a < π Tính sin 2a , cos 2a , tan 2a , cot ( a - π/4 ) , sin a/2 , cos a/2 Cảm ơn trc❤
Rút gọn các biểu thức :
a) \(\sin\left(a+b\right)+\sin\left(\dfrac{\pi}{2}-a\right)\sin\left(-b\right)\)
b) \(\cos\left(\dfrac{\pi}{4}+a\right)\cos\left(\dfrac{\pi}{4}-a\right)+\dfrac{1}{2}\sin^2a\)
c) \(\cos\left(\dfrac{\pi}{2}-a\right)\sin\left(\dfrac{\pi}{2}-b\right)-\sin\left(a-b\right)\)
Tính \(\sin2a;\cos2a;\tan2a\) biết :
a) \(\sin a=-0,6\) và \(\pi< a< \dfrac{3\pi}{2}\)
b) \(\cos a=-\dfrac{5}{13}\) và \(\dfrac{\pi}{2}< a< \pi\)
c) \(\sin a+\cos a=\dfrac{1}{2}\) và \(\dfrac{\pi}{2}< a< \dfrac{3\pi}{4}\)
Rút gọn các biểu thức :
a) \(\dfrac{\sin2\alpha+\sin\alpha}{1+\cos2\alpha+\cos\alpha}\)
b) \(\dfrac{4\sin^2\alpha}{1-\cos^2\dfrac{\alpha}{2}}\)
c) \(\dfrac{1+\cos\alpha-\sin\alpha}{1-\cos\alpha-\sin\alpha}\)
d) \(\dfrac{1+\sin\alpha-2\sin^2\left(45^0-\dfrac{\alpha}{2}\right)}{4\cos\dfrac{\alpha}{2}}\)