Giải:
\(S=4+2^1+2^2+2^3+...+2^{100}\)
\(\Leftrightarrow S=2^2+2^1+2^2+2^3+...+2^{100}\)
\(\Leftrightarrow2S=2^3+2^2+2^3+2^4+...+2^{101}\)
\(\Leftrightarrow2S-S=\left(2^3+2^{101}\right)-\left(2^2+2^1\right)\)
Hay \(S=2^3+2^{101}-2^2-2^1\)
\(\Leftrightarrow S=8+2^{101}-4-2\)
\(\Leftrightarrow S=2^{101}+2\)
Vậy ...
Chúc bạn học tốt!
S = 4 + 21 + 22 + 23 + ... + 2100
S - 4 = 21 + 22 + 23 + ... + 2100
2(S - 4) = 22 + 23 + 24 + 2101
2(S - 4) - (S - 4) = (22 + 23 + 24 + 2101) - (21 + 22 + 23 + ... + 2100)
S - 4 = 2101 - 2
S = 2101 + 2