P= √(6+√35)^2 *2*(√7-√5)*√(6-√35)
P=(√(6+√35))*(√(6-√35))*2*(√7-√5)
P= √(6+√35)*2*(√7-√5)
P=√(12+2√35)*(√7-√5)
P=√(√7+√5)^2 *(√7-√5)
P=(√7+ √5)*(√7-√5)
P=2
P= √(6+√35)^2 *2*(√7-√5)*√(6-√35)
P=(√(6+√35))*(√(6-√35))*2*(√7-√5)
P= √(6+√35)*2*(√7-√5)
P=√(12+2√35)*(√7-√5)
P=√(√7+√5)^2 *(√7-√5)
P=(√7+ √5)*(√7-√5)
P=2
\(\left(\sqrt{6-\sqrt{35}}\right)^x+\left(\sqrt{6+\sqrt{35}}\right)^x=12\)
\(\left(\sqrt{4+\sqrt{15}}+\sqrt{6-\sqrt{35}}-\sqrt{\dfrac{7}{2}}\right)^2\)\(+\left(\sqrt{4-\sqrt{15}}-\sqrt{6+\sqrt{35}}+\sqrt{\dfrac{3}{2}}\right)^2\)
Tính giá trị biểu thức nha mn
Tính:
\(a.\) \(A=\sqrt{12}-2\sqrt{48}+\dfrac{7}{5}\sqrt{75}\)
\(b.\) \(B=\sqrt{14-6\sqrt{5}}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(c.\) \(C=\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
\(d.\) \(D=\dfrac{5+\sqrt{5}}{\sqrt{5}+2}+\dfrac{\sqrt{5}-5}{\sqrt{5}}-\dfrac{11}{2\sqrt{5}+3}\)
\(\sqrt{10}\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)}\)
Tính:
\(a)A=\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}\\ b)\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
Rút gọn biểu thức:
\(a,\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(b,\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
1. Rút gọn \(A=\frac{\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}}{\sqrt{\left(\sqrt{5}+1\right)\cdot\sqrt{6-2\sqrt{5}}}}\)
2.Tính a) \(B=\left(\sqrt[3]{2}+1\right)^3\cdot\left(\sqrt[3]{2}-1\right)^3\)
b)Tìm C=\(a^3b-ab^3\) với \(a=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\); \(b=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
3. Giải \(\left|x^2-x+1\right|-\left|x-2\right|=6\)
Rút gọn
\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(\sqrt{6}+2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)