\(\dfrac{1}{A}=\dfrac{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}\)
\(\dfrac{1}{A}=1-\dfrac{\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}\)
\(\dfrac{1}{A}=1-\dfrac{\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}{\dfrac{3.4+2.4-2.3}{2.3.4}}\)
\(\dfrac{1}{A}=\dfrac{1}{3.4+2.4-2.3}\)
\(\dfrac{1}{A}=1-\dfrac{1}{14}\) \(=\dfrac{13}{14}\)
⇒ \(A=\dfrac{14}{13}\)
Cách 2:
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) ( 1 )
Có: \(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\)\(=\dfrac{12}{24}+\dfrac{8}{24}-\dfrac{6}{24}=\dfrac{14}{24}\)
Thay \(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\) \(=\dfrac{14}{24}\) vào ( 1 ), ta có:
\(\dfrac{\dfrac{14}{24}}{\dfrac{14}{24}-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) \(=\dfrac{\dfrac{14}{24}}{\dfrac{14}{24}-\dfrac{1}{24}}\) \(=\dfrac{\dfrac{14}{24}}{\dfrac{13}{24}}\) \(=\dfrac{14}{24}:\dfrac{13}{24}=\dfrac{14.24}{13.24}=\dfrac{14}{13}\)
Vậy \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) \(=\dfrac{14}{13}\).