Lời giải:
\(\lim \frac{1}{1^2+1}.\frac{2}{2^2+1}....\frac{n}{n^2+1}=\lim \frac{1.2.3...n}{(1^2+1)(2^2+1)....+(n^2+1)}\)
\(=\lim \frac{1}{(1+\frac{1}{1})(2+\frac{1}{2})....(n+\frac{1}{n})}\)
Với $n\to +\infty$ thì $(1+\frac{1}{1})(2+\frac{1}{2})....(n+\frac{1}{n})\to +\infty$ nên \(=\lim \frac{1}{(1+\frac{1}{1})(2+\frac{1}{2})....(n+\frac{1}{n})}=0\)