C/Minh đẳng thức:
a) \(\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{2}{a-1}\) (với a>0, b>0, a≠b)
b)\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\) (với a>0, b>0,a≠b)
c) \(\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}=\frac{a+9}{a-9}\) (với a≥0, b≥0,a≠9)
A = \(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)
a) rút gọn A
b) Tính A với a = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
Xác định gt các bt sau:
\(a.A=\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right),y=\frac{1}{2}\left(b+\frac{1}{b}\right)\) (a>1; b>1)
\(b.B=\frac{\sqrt{a+bx}+\sqrt{a-bx}}{\sqrt{a+bx}-\sqrt{a-bx}}\) với \(x=\frac{2am}{b\left(1+m^2\right)},\left|m\right|< 1\)
Cho A=\(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{2\left(\sqrt{3}+\sqrt{5}\right)}+\frac{1}{3\left(\sqrt{5}+\sqrt{7}\right)}+...+\frac{1}{40\left(\sqrt{79}+\sqrt{81}\right)}\)
Chứng minh rằng A<\(\frac{8}{9}\)
Giúp mình với, mình đang rối quá
giải phương trình: \(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
Q= \(\frac{\sqrt{a}\left(1-a\right)^2}{1-a^2}:\left[\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
a) Rút gọn biểu thức Q? b) Xét dấu of biểu thức P= a.(Q-\(\frac{1}{2}\))
Rút gọn: A= \(\left(\frac{1}{\sqrt{a}+\sqrt{a+1}}-\frac{1}{\sqrt{a}-\sqrt{a-1}}\right):\left(1+\frac{\sqrt{a+1}}{\sqrt{a-1}}\right)\)
cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:
\(\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}+\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}+\frac{1}{\left(c+a+2\sqrt{b+c}\right)^3}\le\frac{8}{9}\)
M=
Với a>0;a≠1
\(\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1+\sqrt{a}}\right)×\left(\frac{1}{\sqrt{a}}-1\right)\)
Cho P = \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)RútgonP.Cho\sqrt{a}+\sqrt{b}=4.Tim.GTNNcuaP\)