Ta có: \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\left(\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)\left(\sqrt{\dfrac{9}{4}}+\sqrt{5}\right)}\right)\)
<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\sqrt{\dfrac{81}{16}-5}}\right)\)
<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\dfrac{1}{4}}\right)\)
Đặt \(D=\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}\)
<=> \(D^2=\left(\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)^2\)
\(=\dfrac{9}{4}+\sqrt{5}+\dfrac{9}{4}-\sqrt{5}-2\sqrt{\left(\sqrt{\dfrac{9}{4}+\sqrt{5}}\right)\left(\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)}\)
<=> \(D^2=\dfrac{9}{2}-2.\sqrt{\dfrac{1}{16}}=\dfrac{9}{2}-2.\dfrac{1}{4}=4\)
<=> \(D=\sqrt{4}=2\)
=> \(x=9-\dfrac{2}{\dfrac{1}{4}}=1\)
Mà \(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\)
=> \(f\left(1\right)=\left(1-3+1\right)^{2016}=1\)
Hay \(f\left(x\right)=1\) khi \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
P/s: Đã lm chậm nhất có thể!