\(L=\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}=\lim\limits_{x\rightarrow0}\frac{\left(e^x-1\right)\left(\sqrt{x+1}-1\right)}{x}=\lim\limits_{x\rightarrow0}\left[\frac{e^x-1}{x}.\left(\sqrt{x+1}-1\right)\right]=1.0=0\)
\(L=\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}=\lim\limits_{x\rightarrow0}\frac{\left(e^x-1\right)\left(\sqrt{x+1}-1\right)}{x}=\lim\limits_{x\rightarrow0}\left[\frac{e^x-1}{x}.\left(\sqrt{x+1}-1\right)\right]=1.0=0\)
Tính các giới hạn sau:\(M=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{1-cos3x}\)
\(N=\lim\limits_{X\rightarrow0}\dfrac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{\sqrt{1+x}-1}\)
\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\sqrt{1+2x}-\sqrt[3]{1+3x}}\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow0}\frac{e^x-e^{-x}}{\sin x}\)
tìm các giới hạn sau:
a, \(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{x}-1}{\sqrt{x}-1}\)
b, \(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+x^2}-1}{x^2}\)
c, \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+2}+\sqrt{x+7}-5}{x-2}\)
tìm các giới hạn sau:
a, \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+x^2}-1}{x}\)
b,\(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+7}-\sqrt{5-x^2}}{x-1}\)
c, \(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}\)
d, \(\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{4x-2}}{x-2}\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{2x}\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{\tan x}\)
tìm các giới hạn sau:
a, \(\lim\limits_{x\rightarrow-3}\frac{x+\sqrt{3-2x}}{x^2+3x}\)
b, \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+9}+\sqrt{x+16}-7}{x}\)
c, \(\lim\limits_{x\rightarrow\frac{1}{2}}\frac{8x^2-1}{6x^2-5x+1}\)
d, \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{4-\sqrt{x^2+16}}\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow0}\frac{e^{5x+3}-e^3}{2x}\)
Bài 1
a. \(\lim\limits_{x\rightarrow+\infty}\frac{1+2\sqrt{x}-x}{x+3}\) b. \(\lim\limits_{x\rightarrow+\infty}\frac{x^3+3x-1}{x^2\sqrt{x}+x}\) c. \(\lim\limits_{x\rightarrow-\infty}\frac{x+2\sqrt{1-x}}{1-x}\)
Bài 2: Tính các giới hạn sau biết \(\lim\limits_{x\rightarrow0}\frac{\sin x}{x}=1\)
a. \(\lim\limits_{x\rightarrow0}\frac{1-\cos x}{1-\cos3x}\) b. \(\lim\limits_{x\rightarrow0}\frac{\cot x-\sin x}{x^3}\) c. \(\lim\limits_{x\rightarrow\infty}\frac{x.\sin x}{2x^2}\)