áp dụng công thức naỳ vào lm nhé :))
\(ax^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\ge\dfrac{4ac-b^2}{4a}\)
điều kiện là a khác 0
đẳng thức xảy ra khi \(x=-\dfrac{b}{2a}\)
mẫu câu a nhé =))
\(x^2-3x+1=\left(x+\dfrac{-3}{2.1}\right)^2+\dfrac{4.1.1-\left(-3\right)^2}{4.1}\\ =\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\)
đẳng thức xảy ra khi \(x=-\left(-\dfrac{3}{2}\right)=\dfrac{3}{2}\)
vậy GTNN của bt = -5/4 tại x=3/2
• bạn muốn kiểm tra lại kq làm đúng hay ko thì dùng máy tính bấm như này nhé (mt loại fx 500 trở lên nha )
+ đối vs máy casio:
MODE -> 5 -> 3 -> hiện ra cái bảng -> bấm hệ số a,b,c vào -> enter(dấu =)
kq thứ nhất vs thứ 2 là hai nghiệm của pt
bấm đến dấu = thứ 3 là gt của x để bt có GTNN( or GTLN) (nó hiện là X- Value Minium)
bấm dấu = lần nữa thì có GTNN nhé (nó hiện là Y- Value Minium)
VD câu a nhé :))
MODE ->5->3->1->-3->1-> = -> = -> 3/2 -> -5/4
vậy GTNN là -5/4 tại x=3/2
+ đối vs máy vinacal :
SHIFT -> 6 -> hiện ra cái bảng -> cx điền hệ số a,b,c vào -> dấu = đầu nó cho gt của x để bt đạt GTNN ( or GTLN) -> dấu = tiếp theo nó hiện GTNN (or GTLN) của bt đó
máy vinacal thì đơn giản hơn nhiều nhé :))
p/s: ai đọc thì đọc, ko đọc thì thôi chứ đừng cho gạch đá nha :))