\(x+y-5=0\Rightarrow x+y=5\)
\(A=x^3+x^2y-5x^2-x^2y+5xy+3\left(x+y\right)+2020\\ =x^2\left(x+y-5\right)-\left(x^2y-5xy\right)+3\cdot5+2020\\ =x^2\cdot0-\left[xy\left(x-5\right)\right]+15+2020\\ =0-\left[-\left(y^2\right)x\right]+15+2020\\ =0+xy^2+15+2020\\ =xy^2+2035\\ \Rightarrow A=xy^2+2035\)