a) 10a2-3b2+5ab=0
9a2-b2 ko=0
\(\dfrac{2a-b}{3a-b}+\dfrac{5b-3}{3a+b}\)
b) a4+b4+2a2b2=4
a8+a4b4+b8=8
a12+a2b2+b12=?
Biết \(b\ne\pm3a\) và \(6a^2-15ab+5b^2=0\) tính giá trị của
Q = \(\dfrac{2a-b}{3a-b}+\dfrac{5b-a}{3a+b}\)
Tính giá trị của biểu thức: \(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\), biết rằng 2a=by+cz, 2b=ax+cz, 2c=ax+by và \(a+b+c\ne0\)
Tính giá trị của biểu thức: \(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\), biết rằng 2a=by+cz, 2b=ax+cz, 2c=ax+by và \(a+b+c\ne0\)
Cho a>b>0 và 2(a2+b2)=5ab. Tính giá trị của P=\(\dfrac{3a-b}{2a+b}\)
\(\dfrac{5a+3b}{3a+b+2c}\)+\(\dfrac{5b+3c}{3b+c+2a}\)+\(\dfrac{5c+3a}{3c+a+2b}\)\(\ge4\) a,b,c là độ 3 cạnh tam giác
cho biểu thức P=\(\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right).\dfrac{6a}{a^2-6a+9}\)
a.rút gọn P
b.tìm giá trị của A để P>0
cho bt : \(10a^2-ab=3b^2\left(a\ne0,b\ne0\right)\)
Tính gtri biểu thức \(P=\frac{5ab}{25a^2+3b^2}\)
rust gọn các biểu thức sau
a) A= \(\dfrac{1}{a-b}+\dfrac{1}{a+b}+\dfrac{2a}{a^2+b^2}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)
b ) B= \(\dfrac{1}{a^2+a}+\dfrac{1}{a^2+3a+2}+\dfrac{1}{a^2+5a+6}+\dfrac{1}{a^2+7a+9}+\dfrac{1}{a^2+9a+20}\)