1. cho x là góc nhọn, chứng minh \(\dfrac{1}{\sin^2}x\) - 1 = \(\dfrac{1}{\tan^2x}\)
2. cho \(\cos x=\dfrac{1}{3}\); tính giá trị của \(A=\dfrac{1}{\cot^2x}+1\)
3. đơn giản biểu thức: \(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)
4.cho 00 < 900, c/m \(\dfrac{\sin^2\alpha-\cos^2\alpha+\cos^4\alpha}{\cos^2\alpha-\sin^2\alpha+\sin^4\alpha}=\tan^4\alpha\)
Tính giá trị biểu thức:
a) \(\sin^230^0-\sin^240^0-\sin^250^0+\sin^260^0\)
b) \(\cos^225^0-\cos^235^0+\cos^245^0-\cos^255^0+\cos^265^0\)
Cho 0* < x <90*. Chứng minh đẳng thức sau:
\(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)
Cho A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\) với x ≥ 0, x ≠ 0
a) Rút gọn A
b) Tính giá trị của A khi x = \(6+4\sqrt{2}\)
Cho \(0^o< \alpha< 90^o\) và \(\dfrac{sin^4\alpha}{m}+\dfrac{cos^4\alpha}{n}=\dfrac{1}{m+n}\left(m,n>0\right)\)
Cmr \(\dfrac{sin^{2010}\alpha}{m^{1004}}+\dfrac{cos^{2010}\alpha}{n^{1004}}=\dfrac{1}{\left(m+n\right)^{1004}}\)
Cho \(0^o< \alpha< 90^o\) có \(\dfrac{sin^4\alpha}{m}+\dfrac{cos^4\alpha}{n}=\dfrac{1}{m+n}\left(m,n>0\right)\)
CMR \(\dfrac{sin^{2010}\alpha}{m^{1004}}+\dfrac{cos^{2010}\alpha}{n^{1004}}=\dfrac{1}{\left(m+n\right)^{1004}}\)
Tính giá trị của biểu thức:
a,A= \(sin^215^0+sin^240^0+sin^260^0+sin^275^0+sin^250^0+sin^230^0\)
b, B=\(tan5^0tan10^0....tan85^0\)
c, C=\(cos^215^0-cos^225^0+cos^235^0-cos^245^0-cos^265^0+cos^275^0\)
LÀM ƠN GIÚP MÌNH NHÉ, MAI NỘP RÙI. PLEASE!!!!!!
Cho 00 < x < 900. Chứng minh các đẳng thức sau:
1. sin6 x +cos6 x = 1 - 3sin2 x cos2 x.
2. sin4 x - cos4 x = 1 - 2cos2 x.
3. tan2 x - sin2 x = tan2 x.sin2x.
4. cot2 x - cos2 x = cot2 x.cos2 x.
5.\(\left(\sqrt{\dfrac{1+sinx}{1-sinx}}-\sqrt{\dfrac{1-sinx}{1+sinx}}\right)^2\) = 4 tan2 x.
6.\(\left(\sqrt{\dfrac{1+cosx}{1-cosx}}-\sqrt{\dfrac{1-cosx}{1+cosx}}\right)^2\) = 4 cot2 x.
Cho 0o < x < 90o, CM :
\(\dfrac{\sin x}{1+\cos x}+\dfrac{1+\cos x}{\sin x}=\dfrac{2}{\sin x}\)