\(\frac{2^{2016}+2^{2016}}{-2^{2017}}=\frac{2.2^{2016}}{-2^{2017}}=\frac{2^{2017}}{-2^{2017}}=-1\)
\(\frac{2^{2016}+2^{2016}}{-2^{2017}}=\frac{2.2^{2016}}{-2^{2017}}=\frac{2^{2017}}{-2^{2017}}=-1\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(B=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}+\frac{1}{2017}\)
Tính \(\left(A-B\right)^{2016^{2017}}\)
Cho P= 1^2017+2^2017+3^2017+...+2016^2017, Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
Rút gọn B = \(\left[\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\right]:\frac{2016}{2017}\)
Tìm x : \(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)
Tổng x,y thỏa mãn:(x-2016)^2+(y+ 2017)^2=0
Tính giá trị của biểu thức:
\(P=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2016}{2^{2016}}\)
Tính \(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+\text{4}\right)+...+\frac{1}{2016}\left(1+2+...+2016\right)\)
Giải bất phương trình : \(\frac{2016}{-x}< 2017\)
\(M=\frac{10^{2015}+1}{10^{2016}+1}\)
\(N=\frac{10^{2016}+1}{10^{2017}+1}\)
So \(M\) với \(N\)