\(P=\dfrac{6+7+9}{2}=11\left(cm\right)\)
\(S=\sqrt{11\cdot5\cdot4\cdot2}=2\sqrt{110}\left(cm^2\right)\)
\(P=\dfrac{6+7+9}{2}=11\left(cm\right)\)
\(S=\sqrt{11\cdot5\cdot4\cdot2}=2\sqrt{110}\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a) Tính độ dài đoạn thẳng DE
b) Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
c) Tính diện tích tứ giác DENM
cho ΔABC vuông tại A, đường cao AH.Gọi E,F lần lượt là hình chiếu của H trên AB,AC.
1)Cho AB=9cm,BH=5,4cm.Tính các cạnh AC,BC,AH,FE.Tính các góc ABC,HAC(làm tròn đến độ)
2) Tính diện tích tứ giác AEHF, tam giác AFE
3) Kẻ đường phân giác AD,từ D kẻ DP\(\perp\)AB,DQ\(\perp\)AC.Tính BD,CD,AD, chu vi và diện tích AQDP
4) chứng minh rằng:
a) AE.AB=AF.AC=HB.HC b)BC=AB.cosB+AC.cosC
c)tanB.sinB=HC/AB d)cosC.sinB=HC/BC
5)Chứng minh rằng: 1/EF2 =1/AB2 + 1/AC2
6) Chứng minh rằng: EA.EB+FA.FC=HB.HC
cho ΔABC vuông tại A, đường cao AH.Gọi E,F lần lượt là hình chiếu của H trên AB,AC.
1)Cho AB=9cm,BH=5,4cm.Tính các cạnh AC,BC,AH,FE.Tính các góc ABC,HAC(làm tròn đến độ)
2) Tính diện tích tứ giác AEHF, tam giác AFE
3) Kẻ đường phân giác AD,từ D kẻ DP⊥⊥AB,DQ⊥⊥AC.Tính BD,CD,AD, chu vi và diện tích AQDP
4) chứng minh rằng:
a) AE.AB=AF.AC=HB.HC b)BC=AB.cosB+AC.cosC
c)tanB.sinB=HC/AB d)cosC.sinB=HC/BC
5)Chứng minh rằng: 1/EF2 =1/AB2 + 1/AC2
6) Chứng minh rằng: EA.EB+FA.FC=HB.HC
Cho tam giác nhọn ABC, đường cao BE, CF. Gọi SAEF, SABC lần lượt là diện tích của tam giác AEF và tam giác ABC. Chứng minh SAEF/SABC =1-sin2A
Cho hình thang ABCD. Biết hai đáy AB = a, CD = 2a, cạnh bên AD = a, \(\widehat{A}=90^0\)
a) Chứng minh tg C = 1
b) Tính tỉ số diện tích tam giác DBC và diện tích hình thang ABCD
c) Tính tỉ số diện tích tam giác ABC và diện tích tam giác DBC
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm
a) Tính \(BC,\widehat{B},\widehat{C}\)
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB và AC. Tứ giác AEDF là hình gì ? Tính chu vi và diện tích của tứ giác AEDF
\(Cho tam giác CDE vuông tại C, đường cao CH. Kẻ HA vuông góc với CD, HB vuông góc với CE. Biết CH=9cm, DH= 4 cm a) tính AB,HE, góc D b) chứng minh CA.CD=CB.CE c) Kẻ AM và BN vuông góc với AB. Chứng minh M,N lần lượt là trung điểm của DH và HE d) Tính diện tích tứ giác ABNM\)
tam giác ABC có BC=12,góc B=60 độ,góc C=40 độ.Tính
a. đường cao CH và cạnh AC
b, diện tích tam giác ABC
Cho mOn là góc nhọn. Trên 2 cạnh Om,On lấy 2 điểm A,B thứ tự thay đổi sao cho OA+OB=2a. Tính diện tích lớn nhất tam giác ABO