Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thanh Mai

Tính D = \(\frac{x+y}{x-y}\) biết 2x2 + y2 = 5xy và 0<x<2y

Akai Haruma
18 tháng 6 2019 lúc 11:49

Lời giải:

Đặt $x=ty$ ($0< t< 2$)

\(2x^2+y^2=5xy\)

\(\Leftrightarrow 2t^2y^2+y^2-5ty^2=0\)

\(\Leftrightarrow y^2(2t^2-5t+1)=0\Rightarrow 2t^2-5t+1=0\) (Do $y\neq 0$)

\(\Leftrightarrow 2(t-\frac{5}{4})^2=\frac{17}{8}\Rightarrow t-\frac{5}{4}=\pm \frac{\sqrt{17}}{4}\)

\(\Rightarrow t=\frac{5\pm \sqrt{17}}{4}\). Mà $0< t< 2$ nên $t=\frac{5-\sqrt{17}}{4}$

Do đó:

\(D=\frac{x+y}{x-y}=\frac{ty+y}{ty-y}=\frac{y(t+1)}{y(t-1)}=\frac{t+1}{t-1}=\frac{\frac{5-\sqrt{17}}{4}+1}{\frac{5-\sqrt{17}}{4}-1}=\frac{1-\sqrt{17}}{2}\)

Akai Haruma
17 tháng 7 2019 lúc 18:35

Lời giải:

Đặt $x=ty$ ($0< t< 2$)

\(2x^2+y^2=5xy\)

\(\Leftrightarrow 2t^2y^2+y^2-5ty^2=0\)

\(\Leftrightarrow y^2(2t^2-5t+1)=0\Rightarrow 2t^2-5t+1=0\) (Do $y\neq 0$)

\(\Leftrightarrow 2(t-\frac{5}{4})^2=\frac{17}{8}\Rightarrow t-\frac{5}{4}=\pm \frac{\sqrt{17}}{4}\)

\(\Rightarrow t=\frac{5\pm \sqrt{17}}{4}\). Mà $0< t< 2$ nên $t=\frac{5-\sqrt{17}}{4}$

Do đó:

\(D=\frac{x+y}{x-y}=\frac{ty+y}{ty-y}=\frac{y(t+1)}{y(t-1)}=\frac{t+1}{t-1}=\frac{\frac{5-\sqrt{17}}{4}+1}{\frac{5-\sqrt{17}}{4}-1}=\frac{1-\sqrt{17}}{2}\)


Các câu hỏi tương tự
Phạm Bảo An
Xem chi tiết
Nguyễn Vân Giang
Xem chi tiết
︎ ︎︎ ︎=︎︎ ︎︎ ︎
Xem chi tiết
Nguyễn linh
Xem chi tiết
Hoàng Đức Mạnh
Xem chi tiết
Nguyễn Hải Thiên
Xem chi tiết
Linh Đặng
Xem chi tiết
Nguyễn văn a
Xem chi tiết
Chii Phương
Xem chi tiết