a/ \(=\lim\limits_{x\rightarrow4^-}\dfrac{5-2x}{4-x}=\dfrac{-3}{0}=-\infty\)
b/ \(=\lim\limits_{x\rightarrow+\infty}x^3\left(-1+\dfrac{1}{x}-\dfrac{2}{x^2}+\dfrac{1}{x^3}\right)=-\infty\)
a/ \(=\lim\limits_{x\rightarrow4^-}\dfrac{5-2x}{4-x}=\dfrac{-3}{0}=-\infty\)
b/ \(=\lim\limits_{x\rightarrow+\infty}x^3\left(-1+\dfrac{1}{x}-\dfrac{2}{x^2}+\dfrac{1}{x^3}\right)=-\infty\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow4^-}\dfrac{2x-5}{x-4}=-\infty\)
b) \(\lim\limits_{x\rightarrow+\infty}\left(-x^3+x^2-2x+1\right)\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt[3]{x^3+2x^2-4x+1}}{\sqrt{2x^2+x-8}}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}=\dfrac{1}{3}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(\sqrt{x^2+1}+x\right)^n-\left(\sqrt{x^2+1}-x\right)^n}{x}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+\sqrt{x^2+x-10}}{2x+3}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{3x^2+\sqrt{x^2+x-10}}{\sqrt{x^3+x^2-3x-x^2+3}}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow\infty}\sqrt{2x^2+x-2}-x\)
b) \(\lim\limits_{x\rightarrow-\infty}\sqrt{x^2+x-2}+x\)
Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow0^-}\dfrac{2\left|x\right|+x}{x^2-x}\)
b) \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2-x}-\sqrt{x^2-1}\right)\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+x+2}}{x-1}\)
b, \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-x}+2x\right)\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\sqrt[3]{x^3+3x^2}-\sqrt{x^2-2x}\)
b) \(\lim\limits_{x\rightarrow+\infty}\sqrt[n]{\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)}-x\)