Gọi a, b, c, h là độ dài hai cạnh góc vuông, cạnh huyền và đường cao
Có \(c=\sqrt{a^2+b^2},ab=ch\Leftrightarrow h=\dfrac{ab}{c}\)
Có \(\left\{{}\begin{matrix}a+b=70\\c+h=74\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=70\\\sqrt{a^2+b^2}+\dfrac{ab}{\sqrt{a^2+b^2}}=74\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b=70\\a^2+b^2+ab=74\sqrt{a^2+b^2}\end{matrix}\right.\)
PT dưới tương đương: \(\left(a+b\right)^2-ab=74\sqrt{\left(a+b\right)^2-2ab}\)
\(\Leftrightarrow ab=1200\)
Suy ra \(\left\{{}\begin{matrix}a+b=70\\ab=1200\end{matrix}\right.\), a và b là hai nghiệm của pt \(x^2-70x+1200=0\)
\(\Leftrightarrow a=30,b=40\)
Vậy độ dài các cạnh góc vuông, cạnh huyền và đường cao là 30, 40, 50, 24.