Hồng Phúc helppp meeeee!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Hồng Phúc helppp meeeee!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Rút gọn:
\(A=\dfrac{\sqrt[3]{x^4}+\sqrt[3]{x^2y^2}+\sqrt[3]{y^4}}{\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}}\)
\(B=\dfrac{\sqrt[3]{xy}\left(\sqrt[3]{y^2}-\sqrt[3]{x^2}\right)+\left(\sqrt[3]{x^4}-\sqrt[3]{y^4}\right)}{\sqrt[3]{x^4}+\sqrt[3]{x^2y^2}-\sqrt[3]{x^3y}}.\sqrt[3]{x^2}\)
\(C=\left(\dfrac{x\sqrt[3]{x}-2x\sqrt[3]{y}+\sqrt[3]{x^2y^2}}{\sqrt[3]{x^2}-\sqrt[3]{xy}}+\dfrac{\sqrt[3]{x^2y}-\sqrt[3]{xy^2}}{\sqrt[3]{x}-\sqrt[3]{y}}\right).\dfrac{1}{\sqrt[3]{x^2}}\)
Tính B = \(\frac{1+xy}{x+y}-\frac{1-xy}{x-y}vớix=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2+\sqrt{2}}}}y=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Rút gọn biểu thức:
\(P=\left(\frac{2\sqrt[3]{2}\cdot xy}{x^2y^2-\sqrt[3]{4}}+\frac{xy-\sqrt[3]{2}}{2xy+2\sqrt[3]{2}}\right)\cdot\frac{2xy}{xy+\sqrt[3]{2}}-\frac{xy}{xy-\sqrt[3]{2}}\)
Cho \(x=\dfrac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\) và \(y=\dfrac{6}{3\sqrt[3]{2}-2\sqrt[3]{4}}\) . Tính \(A=xy^3-x^3y\)
Rút gọn:
a,\(\frac{3+\sqrt{3}}{1+\sqrt{3}}\)
b,\(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-\sqrt{2}}\)
c,\(\frac{y-2\sqrt{y}}{\sqrt{y}-2}\)
d,\(\frac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
e,\(\frac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
g,\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)
2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:
a) M-N
b) \(M^3-N^3\)
3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\))
4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)
5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)
6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)
7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)
8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)
9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)
10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)
a) cho N= \(x^2-3x\sqrt{y}+2y\)
tính GT của N khi x=\(\frac{1}{\sqrt{5}-2}\), y=\(\frac{1}{9+4\sqrt{5}}\)
b) cho S= x\(\sqrt{1+y^2}+y\sqrt{1+x^2}\). tính S biết \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2005\) c) c/m\(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}< 2\sqrt[3]{3}\) hộ mình vớia) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)