A=sin240+cos210+2sin40cos10-cos240-sin210-2sin10cos40+cos(90+50)
A=(sin240-cos240)+(cos210-sin210)+2(sin40cos10-cos40sin10)-sin50
A=(sin40-cos40)(sin40+cos40)-(sin10-cos10)(sin10+cos10)+1-sin50
A=\(\sqrt{2}\) sin(40-\(\frac{\pi}{4}\))\(\sqrt{2}\) cos(40-\(\frac{\pi}{4}\))-\(\sqrt{2}\)sin(10-\(\frac{\pi}{4}\))\(\sqrt{2}\) cos(10-\(\frac{\pi}{4}\))+1-sin50
A=-2sin5cos5+2sin35cos35+1-sin50
A= - sin10+sin70+1-sin50
A= 2cos40sin30-sin(90-40)+1
A=cos40-cos40+1 =1