\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{100-99}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-......-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}.\)
Vậy \(A=\frac{99}{100}.\)
Chúc bạn học tốt!
suy ra
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\) (vì thêm dấu ngoặc)
=\(\frac{99}{100}\)
Ta có công thức:\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\left(n\ne0;-1\right)\)
Áp dụng ta có:
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{100}=\frac{99}{100}\)
#Walker