\(A=1+\frac{1}{2}+\frac{2}{2^2}+...+\frac{2014}{2^{2014}}+\frac{2015}{2^{2015}}\)
\(2A=2+1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\)
Trừ dưới cho trên:
\(A=2+0+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}-\frac{2015}{2^{2015}}\)
\(A=2-\frac{2015}{2^{2015}}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
Xét \(B=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)
Trừ dưới cho trên: \(B=1-\frac{1}{2^{2014}}\)
\(\Rightarrow A=2-\frac{2015}{2^{2015}}+1-\frac{1}{2^{2014}}=3-\left(\frac{2015}{2^{2015}}+\frac{1}{2^{2014}}\right)\)
Nhìn thế này chắc đề yêu cầu so sánh với 3