a) \(\left(\sqrt{7}-\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{7}-\sqrt{5}\right)\)
\(=\left[\left(\sqrt{2}-\sqrt{5}\right)+\sqrt{7}\right]\left[\left(\sqrt{2}-\sqrt{5}\right)-\sqrt{7}\right]\)
\(=\left(\sqrt{2}-\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2\)
\(=2-2\sqrt{10}+5-7\)
\(=-2\sqrt{10}\)
b) \(\sqrt{2}\cdot\sqrt{2+\sqrt{3}}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
c) \(\left(\sqrt{2}-\sqrt{6}\right)\sqrt{2+\sqrt{3}}\)
\(=\sqrt{2}\cdot\left(1-\sqrt{3}\right)\cdot\sqrt{2+\sqrt{3}}\)
\(=\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)\)
\(=1-3\)
\(=-2\)