Ta có:
A = \(\dfrac{101+100+99+98+...+1}{101-100+99-98+...+3-2+1}\)
= \(\dfrac{101+\left(100+1\right)+\left(99+2\right)+...+\left(51+50\right)}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)
= \(\dfrac{101+101+101+...+101}{1+1+1+...+1}\) (51 số 101 và 51 số 1)
= \(\dfrac{101.51}{51}\)
= 101
Vậy A = 101