Tính \(H=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...........+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.............+\dfrac{1}{100}}:\dfrac{92-\dfrac{1}{9}-\dfrac{1}{10}-..............\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+........+\dfrac{1}{500}}\)
Help me!!!
Chứng minh rằng: \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
BT1: Tính nhanh:
2) ( \(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\)) . ( \(\dfrac{1}{12}-\dfrac{1}{3}+\dfrac{1}{4}\))
1. 2\(\dfrac{1}{3}\)x + \(8\dfrac{2}{3}\)= \(3\dfrac{1}{3}\)
2. \(\dfrac{1}{3}\) |x - 2|- \(\dfrac{3}{7}\)= \(\dfrac{4}{5}\)
3. Cho M = \(\dfrac{1}{2}\).\(\dfrac{3}{4}\).\(\dfrac{5}{6}\).......\(\dfrac{99}{100}\)và N = \(\dfrac{100}{101}\). Tính tích M.N ?
Giải hộ minh nhé 😘😘😘
CMR: 100- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)
BT2: Tính nhanh
9) \(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}.\left(\dfrac{1}{12}-\dfrac{1}{3}+\dfrac{1}{4}\right)\)
10) \(\left(\dfrac{78}{79}+\dfrac{79}{80}+\dfrac{80}{81}\right).\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{3}{10}-\dfrac{2}{3}\right)\)
Giúp mk nha!
CMR 100-(1+\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\))= (\(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\))
\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}:\dfrac{1}{1-2}+\dfrac{1}{2-3}+...+\dfrac{1}{99-100}\)
Chứng tỏ rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)