A=1+B
B=\(\Sigma\left(\dfrac{x}{2^x}\right)\)( cho x chạy từ 3 đến 100) =1
=> A=1+B=1+1=2
A=1+B
B=\(\Sigma\left(\dfrac{x}{2^x}\right)\)( cho x chạy từ 3 đến 100) =1
=> A=1+B=1+1=2
Tính: A= 1 + \(\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+....+\dfrac{100}{2^{100}}\)
tính: \(B=\dfrac{-2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+\dfrac{5}{3^4}-...-\dfrac{100}{3^{99}}+\dfrac{101}{3^{100}}\)
*Rút gọn
1) G=\(\dfrac{2}{3}+\dfrac{2}{3^3}+\dfrac{2}{3^5}+...+\dfrac{2}{3^{99}}\)
2) H=\(\dfrac{1}{2}-\dfrac{1}{2^4}+\dfrac{1}{2^7}-\dfrac{1}{2^{16}}+...-\dfrac{1}{2^{58}}\)
3) E=\(\dfrac{-1}{3}+\left(\dfrac{-1}{3}\right)^2+\left(\dfrac{-1}{3}\right)^3+...+\left(\dfrac{-1}{100}\right)^{100}\)
10 Rút gọn:
a) A= 1+2+22+23+24+...+249+250
b) B= \(\dfrac{1}{2}+(\dfrac{1}{2})^2+(\dfrac{1}{2})^3+(\dfrac{1}{2})^4+(\dfrac{1}{2})^5+...+(\dfrac{1}{2})^{99}+(\dfrac{1}{2})^{100}\)
1/ Tính
\(\dfrac{\left(1+2+3+...+100\right).\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\)
2/ Tìm x:
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
3/ Cho \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
Chứng minh: \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
4/ Tìm \(a,b\varepsilon Q:a+b=a.b=a:b\)
Giúp mik nha mai mik cần rồi.
A = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+......+\dfrac{1}{2^{100}}\)
B = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{100^2}\)
mk cần gấp
Thực hiện phép tính (tính nhanh nếu có thể):
a) \(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)-\left(\dfrac{5}{3}-\dfrac{3}{2}\right)+\left(\dfrac{7}{3}-\dfrac{5}{2}\right)\)
b) \(\left(\dfrac{3}{4}-1\dfrac{1}{6}\right)^2:\sqrt{\dfrac{25}{144}}\)
Chứng minh rằng:
\(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}< \dfrac{3}{4}\)
tính:\(C=\left(1-\dfrac{1}{2^2}\right)\left(\dfrac{1}{3^2}-1\right)\left(1-\dfrac{1}{4^2}\right)\left(\dfrac{1}{5^2}-1\right)...\left(\dfrac{1}{99^2}-1\right)\left(1-\dfrac{1}{100^2}\right)\)