A=\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)+...+\(\frac{1}{99.100}\)
⇒A=\(\frac{1}{10}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{12}\)+...+\(\frac{1}{99}\)-\(\frac{1}{100}\)
⇒A=\(\frac{1}{10}\)-\(\frac{1}{100}\)
⇒A=\(\frac{9}{100}\)
Vậy A=\(\frac{9}{100}\)
B=\(\frac{1}{1.3}\)+\(\frac{1}{3.5}\)+...+\(\frac{1}{97.99}\)
=\(\frac{1}{2}\).\((1-\frac{1}{3})\)+\(\frac{1}{2}.(\frac{1}{3}-\frac{1}{5})\)+...+\(\frac{1}{2}.(\frac{1}{97}-\frac{1}{99})\)
=\(\frac{1}{2}.(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99})\)
=\(\frac{1}{2}.\frac{98}{99}\)
=\(\frac{49}{99}\)
Vậy B=\(\frac{49}{99}\)