Giải:
Ta có:
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{99}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{2001}\)
\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{2001}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{2001}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1}{2001}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1999}{4002}\)
\(\Leftrightarrow x+1=\dfrac{4002}{1999}\)
\(\Leftrightarrow x=\dfrac{2003}{1999}\)
Vậy ...