\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}.\left(2^{10}+1\right)}{2^{12}.\left(2^{10}+1\right)}=\frac{2^{20}}{2^{12}}=2^8=256\)
\(\frac{\left(8^{10}+4^{10}\right)}{\left(8^4+4^{11}\right)}\\ =\frac{\left(2^{30}+2^{20}\right)}{\left(2^{12}+2^{22}\right)}\\ =\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}\\ =\frac{2^{10}}{2^{12}}=2^2=4\)
Ta có : 8^10 + 4^10 / 8^4 + 4^11
= (2^3)^10 + (2^2)^10 / (2^3)^4 + (2^2)^11
=2^30 + 2^20 / 2^12 +2^22
= 2^20(2^10 +1) / 2^12( 2^10 +1)
= 2^8 = 256