Sửa lại đầu bài: Tìm x
Ta có:
\(3^x+3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}=3267\)
\(\Rightarrow3^x+3^x.3+3^x.3^2+3^x.3^3+3^x.3^4=3267\)
\(\Rightarrow3^x.\left(1+3+3^2+3^3+3^4\right)=3267\)
\(\Rightarrow3^x.121=3267\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
Vậy \(x=3\)