(2x+5)(1-2x)>=0
Lập bảng xét dấu ta đc:
TXĐ: D= ngoặc vuông -5/2 ; 1/2 ngoặc vuông
(2x+5)(1-2x)>=0
Lập bảng xét dấu ta đc:
TXĐ: D= ngoặc vuông -5/2 ; 1/2 ngoặc vuông
Tìm m để TXĐ của hàm số \(y=\sqrt{\left(mx+3\right)\left(x-2\right)}\) là R
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\left(2x+5\right)\left(1-2x\right)}\) ; b) y = \(\sqrt{\frac{x^2+5x+4}{2x^2+3x+1}}\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
Giải bpt : a)\(\left|2x-1\right|< 3x+5\)
b)\(\left|x-1\right|+2\left|x-3\right|=2\)
c)\(\left|x-1\right|+2\left|x-3\right|\ge2\)
Help me with this problem !!
Tìm m để \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+m\) dùng \(\forall x\in\left(-5;3\right)\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2\left(3x-2\right)\left(x^2-1\right)}{\left(-x^2+2x-3\right)\left(2-x\right)^2}\ge0\)
b) \(\dfrac{x-5}{x-1}>2\)
c) \(2x-\sqrt{x^2-5x-14}< 1\)
d) \(x+\sqrt{x^2-4x-5}< 4\)
e) \(\left\{{}\begin{matrix}\left(4-x\right)\left(x^2-2x-3\right)< 0\\x^2\ge\left(x^2-x-3\right)^2\end{matrix}\right.\)
giải các bất phương trình sau:\(\frac{2x-5}{\left|x-3\right|}+1>0\)
\(\frac{\left|x-2\right|}{x^2-5x+6}>=3\)
\(\sqrt{2x+\sqrt{6x^2+1}}>x+1\)
\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\)
\(\sqrt{2-x}>\sqrt{7-x}-\sqrt{-3-2x}\)
\(\sqrt{2x+3}+\sqrt{x+2}\le1\)
\(\left(x+5\right)\left(x-2\right)+3\sqrt{x\left(x+3\right)}>0\)
cho 2x - y = 2 tìm giá trị nhỏ nhất của biểu thức:
A =\(\sqrt{x^2+\left(y+1\right)^2}+\sqrt{x^2+\left(y-3\right)^2}\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)