Lời giải:
Dễ thấy:
$|7x-5y|\geq 0$ với mọi $x,y$
$|2z-3x|\geq 0$ với mọi $x,z$
$|xy+yz+xz-2000|\geq 0$ với mọi $x,y,z$
Do đó để tổng của 3 số trên bằng $0$ thì:
$|7x-5y|=|2z-3x|=|xy+yz+xz-2000|=0$
\(\Leftrightarrow \left\{\begin{matrix} 7x=5y\\ 2z=3x\\ xy+yz+xz=2000\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\ xy+yz+xz=2000(*)\end{matrix}\right.\)
Đặt $\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=t\Rightarrow x=10t; y=14t; z=15t$
Thay vào $(*)\Leftrightarrow 500t^2=2000\Rightarrow t=\pm 2$
$\Rightarrow (x,y,z)=(\pm 20,\pm 28, \pm 30)$