Tính
\(\dfrac{1}{x-y}\cdot\sqrt{x^4\left(x-y\right)^2}\) (x>y)
\(\sqrt{27}\cdot\sqrt{48\cdot\left(2-a\right)^2}\) (a>2)
\(\left(\sqrt{2012}+\sqrt{2011}\right)\cdot\left(\sqrt{2012}+\sqrt{2011}\right)\)
\(\sqrt{\dfrac{64x^2}{49\left(y+1\right)^2}}\) (x<0;y>-1)
\(\sqrt{\dfrac{121x^2}{144\left(y+2\right)}}\left(x>0;y< -2\right)\)
\(\sqrt{\dfrac{676x^3}{169xy^2}}\left(x>0;y< 1\right)\)
Bài 2: Giải phương trình. a, 6. căn x-1 - 1/3 . căn 9x-9 + 7/2 . căn 4x-4 = 24. b, 1/2. căn 4x+8 - 2.căn x+2 - 3/7. căn 49x+48 = -8
Cho x; y; z là các số dương nhỏ hơn 1 thỏa mãn x + y + z + 2\(\sqrt{xyz}\)= 1. Chứng minh rằng \(\sqrt{x\left(1-y\right)\left(1-z\right)}+\sqrt{y\left(1-x\right)\left(1-z\right)}+\sqrt{z\left(1-x\right)\left(1-y\right)}=1+\sqrt{xyz}\)
Giúp em với được không mọi người :
a)Căn 50 - 3 căn 2 + 2 căn 18
b)5 x căn 1/3 - 2 / căn 3 + 1 ( 1 không trong dấu căn 3)
Cho x, y, z > 0 thỏa mãn x + y + z = 1
CMR: \(\frac{1}{x^2+y^2+z^2}+\frac{1}{xyz}\ge30\)
Bài 1: Rút gọn. a, 15 nhân căn bậc 4/3 - 5 căn bậc 48 + 2 căn bậc 12 - 6 nhân căn bậc 1/3. b, B= 15/căn 6 +1 - 3/ căn 7 - căn 2 - 15 căn 6 + 3 căn 7
cho biểu thức
A=(1/căn x -x -1/căn x -2 ) .( căn x +2 /2 )^2
rút gọn
tính giá trị x để A=3/2
trục căn thức
a) \(\dfrac{1}{\sqrt{x-1}};\dfrac{a+2}{\sqrt{a^2-4}};\dfrac{x-y}{\sqrt{x^2-y^2}};\dfrac{a}{\sqrt{x^2}}\) (n lẻ)
b) \(\dfrac{\sqrt{x^2-1}+1}{\sqrt{x^2-1}-1}\)
c) \(\dfrac{2}{\sqrt{7-2\sqrt{6}}}\)
Trục căn thức ở mẫu (giải chi tiết):
F = \(\dfrac{6}{2\sqrt{3}+\sqrt{2}}\)
G = \(\dfrac{1}{\sqrt{a}+b}\)
H = \(\dfrac{2}{\sqrt{a}-\sqrt{b}}\)
K = \(\dfrac{2xy}{2\sqrt{x}+3\sqrt{y}}\)