Giải:
\(5x=2y\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{5}\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{15}\)
\(2x=3z\Leftrightarrow\dfrac{x}{3}=\dfrac{z}{2}\Leftrightarrow\dfrac{x}{6}=\dfrac{z}{4}\)
\(\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{4}\)
Đặt: \(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=15k\end{matrix}\right.\)
\(xy=90\Leftrightarrow6k.15k=90k^2=90\Leftrightarrow k=\pm1\)
TH1: \(k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=15\\z=4\end{matrix}\right.\)
TH1: \(k=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-15\\z=-4\end{matrix}\right.\)
Vậy ...