x2-2y2=1
=> x2-2y2=12
=> x2-12=2y2
=> ( x.x ) - ( 1.1 ) = 2y2
+) ( x.x ) - ( 1.1 ) = 2y2
=>\(\begin{cases}x-1=2\\x+1=2y\end{cases}\)
=>\(\begin{cases}x=3\\x+1=y^2\end{cases}\)
Do x=3
=> x + 1 = y2
=>3 + 1 = y2
=> y = 2
+) (x - 1).(y + 1)= 2.y.y
=> x - 1 = y; x + 1= 2.y
=>\(\begin{cases}x=y+1\\x+1=2.y\end{cases}\)
Do x = y + 1
=> x + 1 = 2.y
=> (y + 1) + 1 = 2 . y
=> y + 2 = 2 . y
=> 2 . y - y = 2
Vậy (x; y) \(\in\) {3; 2}