ta có: \(\frac{1+3y}{12}=\frac{1+6y}{16}\)
\(\Rightarrow\frac{2.\left(1+3y\right)}{24}=\frac{1+6y}{16}\)
\(\Rightarrow\frac{2+6y}{24}=\frac{1+6y}{16}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có
\(\frac{2+6y}{24}=\frac{1+6y}{16}=\frac{2+6y-\left(1+6y\right)}{8}=\frac{2+6y-1+6y}{8}=\frac{1}{8}\)
\(\Rightarrow8.\left(1+6y\right)=16\)
\(\Rightarrow8+48y=16\)
\(\Rightarrow48y=8\)
=> y=\(\frac{1}{8}\)
Ta có
\(\frac{2+6y}{24}=\frac{1+6y}{16}=\frac{1}{8}\)
\(\Rightarrow\frac{1+9y}{4x}=\frac{1}{8}\)
Thế y=1/6 vào biểu thức, ta có
\(\frac{1+9y}{4x}=\frac{1}{8}\)
\(\Rightarrow\frac{1+9.\frac{1}{6}}{4x}=\frac{1}{8}\)
\(\Rightarrow\frac{\frac{5}{2}}{4x}=\frac{1}{8}\)
\(\Rightarrow20=4x\)
\(\Rightarrow x=5\)
Vậy x=5