\(x^2+2xy+y^2+7\left(x+y\right)+y^2+10=0\)
\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}+y^2-\frac{9}{4}=0\)
\(\Leftrightarrow\left(x+y+\frac{7}{2}\right)^2=\frac{9}{4}-y^2\)
Do \(\left(x+y+\frac{7}{2}\right)^2\ge0\Rightarrow\frac{9}{4}-y^2\ge0\Rightarrow y^2\le\frac{9}{4}\)
Mà y nguyên \(\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)
Thay vào pt đầu:
- Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-5\end{matrix}\right.\)
- Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) ko có x nguyên t/m (loại)
- Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) ko có x nguyên t/m (loại)