Lời giải:
Liên hợp.
PT(1)\(\Rightarrow (x-\sqrt{2015+x^2})(x+\sqrt{2015+x^2})(y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)
\(\Leftrightarrow [(x^2)-(2015+x^2)](y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)
\(\Rightarrow -2015(y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)
\(\Rightarrow y+\sqrt{2015+y^2}=\sqrt{2015+x^2}-x(*)\)
Tương tự, nhân cả 2 vế của PT(1) với \(y-\sqrt{2015+y^2}\) ta cũng thu được:
\(x+\sqrt{2015+x^2}=\sqrt{2015+y^2}-y(**)\)
Từ \((*);(**)\Rightarrow x+y=0\Rightarrow y=-x\)
Thay vào PT (2)
\(3x^2+8x^2+12x^2=23\Rightarrow 23x^2=23\Rightarrow x=\pm 1\)
\(\Rightarrow y=\mp 1\)
Vậy..........