Giải:
Ta có: \(5x-3y=0\Rightarrow5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)
\(x-y+16=0\Rightarrow x-y=-16\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-16}{-2}=8\)
+) \(\frac{x}{3}=8\Rightarrow x=24\)
+) \(\frac{y}{5}=8\Rightarrow y=40\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(24;40\right)\)
5x-3y=0\(\Rightarrow\)5x=3y (1)
x-y+16=0\(\Rightarrow\)x-y=(-16)
Từ (1) \(\Rightarrow\)\(\frac{x}{5}\)=\(\frac{y}{3}\)=\(\frac{x-y}{5-3}\)=\(\frac{-16}{2}\)=(-8) (Áp dụng tính chất của dãy tỉ số bằng nhau)
Vì \(\frac{x}{5}\)=(-8) nên x =(-8)5=(-40)
Vì \(\frac{y}{3}\)=(-8) nên y=(-8)3=(-24)
Vậy (x,y) cần tìm là (-40;-24)