a) (2x-1)\(^2\)+\(\left|2y-x\right|\)=0
Vì (2x-1)\(^2\)\(\ge\)0 với mọi x
\(\left|2y-x\right|\)\(\ge\)0 với mọi y
\(\Rightarrow\)\(\left\{\begin{matrix}2x-1=0\\2y-x=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{\begin{matrix}x=\frac{1}{2}\\2y-\frac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)
Vậy .....
b)\(\left|x-\frac{1}{3}\right|\)+\(\frac{4}{5}\)=\(\frac{14}{5}\)
\(\Rightarrow\)\(\left|x-\frac{1}{3}\right|\)=2
\(\Rightarrow\)\(\left[\begin{matrix}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{matrix}\right.\)\(\Rightarrow\)\(\left[\begin{matrix}x=\frac{7}{3}\\x=\frac{-5}{3}\end{matrix}\right.\)
Vậy ....