\(A=\frac{x^3-5x^2+9x-2}{x-3}\)
Để A ∈ Z thì x-3 phải ∈ Ư (7)
Mà Ư(7)={-1;1;7;-7)
*Lập bảng
x-3 | 1 | -1 | 7 | -7 |
x | 4 | 2 | 10 | -5 |
Vậy x∈{4;2;10;-5}
\(A=\frac{x^3-5x^2+9x-2}{x-3}\)
Để A ∈ Z thì x-3 phải ∈ Ư (7)
Mà Ư(7)={-1;1;7;-7)
*Lập bảng
x-3 | 1 | -1 | 7 | -7 |
x | 4 | 2 | 10 | -5 |
Vậy x∈{4;2;10;-5}
Cho biểu thức \(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính GTBT A tại \(\left|x\right|=\frac{1}{2}\)
\(c,Tìm\) giá trị của x để A < 0.
d, Tìm \(x\in Z\) để \(A\in Z\)
Cho biểu thức
A = \(\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right)\)\(:\left(x-2+\frac{10-x^2}{x+2}\right)\)
a, Rút gọn A
b, Tìm x \(\in Z\) để A Max
1.Tìm min B=\(\frac{-x^2+x-10}{x^2-2x+1}\)
2. Cho a,b,c,d>0. CMR: 1<\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
3. Tìm x\(\in Z\) để\(\frac{19}{7-x}\) Max
4. tìm x thuộc Z để F=\(\frac{1950-x}{x-1940}\) min
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
Bài 1:
a) Cho x>y>0 và \(\frac{x^2+y^2}{xy}\)= \(\frac{10}{3}\). Tính giá trị của biểu thức M=\(\frac{x-y}{x+y}\)
b) Tìm giá trị nhỏ nhất của A= \(\frac{5x^2-x+1}{x^2}\), x≠0
Bài 2: Chứng minh rằng:
\(\frac{x-y}{1+xy}\)+\(\frac{y-z}{1+yz}+\frac{z-x}{1+zx}=\frac{x-y}{1+xy}\cdot\frac{y-z}{1+yz}\cdot\frac{z-x}{1+zx}\)
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a) P= x2+3x+3
b) Q= x2+2y2+2xy-2y
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Cho x + y + z = a
x2 + y2 + z2 = b2
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\)
Tính giá trị biểu thức x3 + y3 + z3 theo a, b, c
1. Giải phương trình: 3x2+y2+2x-2y=1
2. a) Tìm x,y,z thỏa mãn phương trình sau:
9x2+y2+2z2-18x+4z-6y+20=0
b) Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1và\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
Chứng minh rằng: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Cho biểu thức:
P=\(\left(\dfrac{x^2-3x}{x^2-9}-1\right):\left(\dfrac{9-x^2}{x^2+x-6}-\dfrac{x-3}{2-x}-\dfrac{x-2}{x+3}\right)\)
a) Rút gọn P
b)Tính giá trị của P biết \(x^3-3x+2=0\)
c)Tìm \(x\in Z\) để \(P\in Z\)